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Abstract

A common response to new educational technology is to suggest banning it, arguing that it
could replace the development of certain skills and knowledge with the capabilities of the new
tool. To counter this argument, it is essential to provide examples demonstrating how the wise use
of new instruments can enhance the teaching and learning of mathematical competencies.

In our present contribution, we address the situation described above through an example in
Geometry which incorporates the following elements:

a) the automated reasoning tools of GeoGebra Discovery, an experimental version of the
mathematical software GeoGebra;

b) the development of mathematical reasoning and proof competencies through elementary
geometry problems, such as loci computation; and

c) a concrete geometric construction as triggering event: given a triangle ABC, find the locus
of points P such that ∠ABP and ∠ACP are congruent.

This construction can be quickly done using GeoGebra Discovery, but what does “finding”
mean here? Is it just creating a visual image or finding an equation with coefficients based on the
positions of A, B, and C? Our goal is to understand the geometric locus both symbolically and ge-
ometrically. As we explore with the help of algebra and geometry software, we’ll discover various
connections to geometric concepts that will deepen our understanding of elementary geometry.

In summary, our goal is to describe the challenges that arise in this elementary, yet highly
inspiring and intriguing context, as an example of the methodological protocols and clear advan-
tages associated with new technologies in mathematics education.
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1 Introduction
This article is an expanded version of the communication “Automated reasoning tools for dealing with
elementary but intriguing geometric loci” presented at the Asian Technology Conference in Mathe-
matics 2024 (see [15]).

1.1 On a geometric construction related to an Olympiad problem
In the field of Mathematics Education, the introduction of new technologies in the classroom has
spurred a debate on the advantages and pitfalls that tools like Dynamic Geometry Software (DGS) or
Computer Algebra Systems (CAS) are bringing in the teaching of Mathematics. The authors of this
paper have been involved in exploring new automatic reasoning tools (see for example [10], [16]),
mainly implemented in an experimental version of the software GeoGebra (GG), GeoGebra Discov-
ery (GGD), maintained by Kovács Zoltán ([8]). They also want to convey the idea that these new
technologies can help students to gain understanding and stimulate their curiosity when confronting
geometric challenges.

With this intention in mind, the first author stepped on a Geometry problem posed in the 60th
Spanish Mathematical Olympiad (OME):

Problem 1 Let ABC be an scalene triangle and P a point in its interior such that ∠PBA ∼= ∠PCA.
Lines PB and PC intersect the interior and exterior angle bisectors through A at points Q and R
respectively. Let S be the point such that CS ∥ AQ and BS ∥ AR. Show that Q, R, S are collinear.

The solution to this problem can be found in the web site of the LX OME ([13], [14]), but from
the statement of this problem a related question arises concerning a geometric locus:

Problem 2 Let ABC be a triangle. Find the geometric locus L′ of all points P such that ∠PBA ∼=
∠PCA.

Computing geometric loci using algebraic symbolic tools has been an active area of interest for
the research team of the first author ([2, 3, 4, 5, 6]). The software GGD, through its command
LocusEquation( , ), allows the automatic computation of loci in a wide variety of geometric
constructions, and Problem 2 was an inviting proposal for checking again the power of the automatic
reasoning tools implemented in GGD.

Let us remark, very roughly speaking (see more details in the mentioned references), that locus
computation through Dynamic Geometry Systems can be approached in quite different ways: just
plotting some positions of the tracing point that builds the locus; or describing the locus through a
numerical equation obtained from a large collection of such positions and with some probabilistic
assumptions; or finding a more precise -yet approximate- equation of the locus by performing some
symbolic elimination algorithms depending on the numerical coordinates of the points involved in the
figure; or considering symbolic coordinates for the points in the figure and then performing elimina-
tion, yielding in this way an exact locus equation.

In this context, as purely symbolic computations are sometimes not performing well, GeoGebra
Discovery LocusEquation( , ) algorithm chooses to output, by elimination, an equation with
coefficients depending on the numerical coordinates of the points in the construction, so it is not
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possible to use in a straightforward way the automated, symbolic, reasoning tools of GeoGebra Dis-
covery to check the purely symbolic validity of the output. In the next sections we will develop the
specific approaches we have developed to deal with this, apparently, simple, but intriguing locus. Let
us construct an arbitrary triangle ABC in GGD, and let us add an arbitrary point P . We can then
consider the angles δ = ∠PBA, ϵ = ∠PCA (in what follows, as is usual in elementary geometry, we
will consider non-oriented angles, i.e. all angles will be non-negative and less than π). The command
LocusEquation( , ) can admit as parameters a Boolean expression f relating geometric ele-
ments of a construction, and a moving point P involved in f , producing as output the locus of points
P making true the given Boolean expression (see [9] for more on this command and other automatic
reasoning tools in GGD). In our case, solving Problem 2 within the GGD environment amounts to
type the simple command

LocusEquation(δ == ϵ, P)

The output after introducing this command is shown in Figure 1a. We will call L this automatically
obtained locus (to distinguish it from our target locus L′). Notice that dealing with angles through
symbolic computation requires handling some subtle issues: one, the transcendental character of the
notion of angle (with respect to the coordinates of defining points); two, the need to deal with signs—
and thus with real algebraic geometry—if approaching angles through trigonometric functions such
as sine, cosine, tangent, etc.

After trying different configurations for the triangle ABC and inspecting the graphic and alge-
braic expression (with numerical, approximate coefficients) of this locus we come up with several
observations:

Observation 1 (O1): The locus L seems to be the union of a circumference L1 and a hyperbola L2.

Observation 2 (O2): The circumference L1 seems to be the circumcircle of ABC.

Observation 3 (O3): The hyperbola L2 seems to contain the vertices A, B, C.

As the reader can appreciate, the use of the software GGD has allowed us to quickly establish a
sequence of conjectures almost from scratch. The appearance of the circumcircle is unsurprising,
because of the elementary properties of inscribed angles in a circle. In any case, these initial observa-
tions stir up our interest in the problem and give rise to a variety of questions that can lead to further
exploration:

Question 1 (Q1): Does L really solve Problem 2? That is, L ∼= L′?

Question 2 (Q2): If our previous observations O1-O3 are correct, the circumference L1 and the hy-
perbola L2 meet in general at four points, being A, B, C three of them. What can we say about
the fourth point of intersection?

Question 3 (Q3): How can we characterize/construct the elements of the hyperbola L2 (center, ra-
dius, axes, asymptotes, vertices and foci)?

Question 4 (Q4): Can we say anything else about this locus?
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(a) (b)

Figure 1: (a) Initial construction and locus L; (b) Fixing up locus L

2 Proving observations O1-O3
As a first consideration, the fact that vertices A, B and C belong to the locus arises some concern,
because when point P coincides with any of these points the equality ∠PBA = ∠PCA becomes
degenerate. Moreover, some experimentation moving the point P along L reveals that on some arcs
the equality ∠PBA = ∠PCA seems to hold, while on others we rather have ∠PBA + ∠PCA =
π. The reason behind this behavior comes from the fact that GGD handles the angle equality δ =
ϵ in symbolic computation terms, an involved approach, as already remarked. To see this, let us
choose appropriate coordinates to simplify calculations. Since angles are preserved by homotheties
and isometries, we can assume B = (1, 0), C = (−1, 0). Let us set A = (a1, a2), P = (x, y). Now,
the equality δ = ϵ, by using the scalar product formula, becomes:

δ = ϵ ⇔ cos δ = cos ϵ ⇔ B⃗A · B⃗P

∥B⃗A∥ · ∥B⃗P∥
=

C⃗A · C⃗P

∥C⃗A∥ · ∥C⃗P∥

By squaring both sides of the last equality and removing denominators we finally get the polynomial
identity

f :=(B⃗A · B⃗P )2(∥C⃗A∥ · ∥C⃗P∥)2 − (C⃗A · C⃗P )2(∥B⃗A∥ · ∥B⃗P∥)2

=− (a2y + (a1 + 1)(x+ 1))2(a22 + (a1 − 1)2)(y2 + (x− 1)2)

+ (a2y + (a1 − 1)(x− 1))2(a22 + (a1 + 1)2)(y2 + (x+ 1)2) = 0

Notice that the squaring process allows the possibility cos δ = − cos ϵ, and this means we can also
have δ + ϵ = π (this will bring us to Question Q1 later). The left side can be factorized (the GG CAS
can perform this easily) to give us

f =− 4(a21y − x2a2 − y2a2 + ya22 − y + a2)(a
2
1xy − a1x

2a2 + a1y
2a2 + a1a2 − xya22 − xy). (1)
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Let us consider the equations

l1(x, y) :=− a2x
2 − a2y

2 + (a21 + a22 − 1)y + a2 = 0, (2)
l2(x, y) :=− a1a2x

2 + a1a2y
2 + (a21 − a22 − 1)xy + a1a2 = 0. (3)

Under the assumption a1a2 ̸= 0 (which amounts to say that triangle ABC is non-degenerate and A is
not contained in the Y -axis), these equations correspond to a circumference and a hyperbola, so that
we have just verified O1, with L1 and L2 corresponding respectively to l1 = 0 and l2 = 0. When A
lies on the Y -axis the hyperbola L2 degenerates into the union of the coordinate axes, and from now
on we will be assuming this is not the case, which is easy to handle. It is also straightforward to check
now that l1 = 0 on A, B and C, so that l1 = 0 is the circumcircle of triangle ABC, as well as to
check that the hyperbola l2 = 0 contains the vertices of the triangle. Therefore, observations O1-O3
are correct.

3 Answering questions Q1-Q4

3.1 Answering Questions 1 and 2
In the previous section we already mentioned that, strictly speaking, the locus L′ we are looking for
does not coincide with L, because of two reasons:

i) The vertices B, C are degenerate points in the sense that equality δ = ϵ loses its meaning;

ii) for certain points P ∈ L we might have δ + ϵ = π instead of δ = ϵ.

In order to clarify this last assertion we can proceed as follows: To preserve the equality cos δ = cos ϵ
we can add to the above locus equation f = 0 an extra condition (carrying our computations into the
realm of computational real algebraic geometry, of greater complexity) which avoids the problem of
loosing control on the signs of these cosines after squaring, that is

(B⃗A · B⃗P )(C⃗A · C⃗P ) ≥ 0,

which insures the sign equality for both cosines. In coordinates this translates into

(a2y + (a1 + 1)(x+ 1))(a2y + (a1 − 1)(x− 1)) ≥ 0. (4)

The left side is a product of two linear expressions in x, y. The first one, when equated to zero,
corresponds to a line that contains vertex C = (−1, 0), while the second one corresponds to a line
containing vertex B = (1, 0). Besides, by solving the system{

a2y + (a1 + 1)(x+ 1) = 0

a2y + (a1 − 1)(x− 1) = 0

we obtain that these lines intersect at the point

D =

(
−a1,

a21 − 1

a2

)
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But it is easy to verify that this point D also belongs to the circle L1 and to the hyperbola L2, and
so we have encounter the answer for Question 2, which asked for the fourth point of intersection of
L − 1 and L2. Notice also that vertex A = (a1, a2) satisfies inequality (4), and all this lead us to the
following answer to Question 1 (see Figure 1b):

Proposition 3 The solution locus for Problem 2 is formed by two arcs: The circular arc BAC con-
taining vertex A, together with a hyperbolic arc BAC (with two branches, since it crosses the line at
infinity) containing A. We must exclude the vertices B, C from this locus.

What else can we say about the point D? After some experimentation in the graphic view of GGD,
we establish a conjecture to work with: The fourth intersection point of L1 ∩ L2 is the symmetric
of point A with respect to the circumcenter of △ABC. Indeed, it is a simple exercise in coordinate
geometry to find the coordinates of a point satisfying this condition and we retrieve again the very
same coordinates of D. Hence, our claim is correct.

Since we already have four points of the hyperbola L2, and having in mind that five points de-
termine a conic, it is natural to look for a fifth point in L2. If we think of the triangle centers, the
orthocenter E of △ABC comes up as a suitable candidate, since ∠EBA,∠ECA ∈

{
π
2
− α, π

2
+ α

}
,

where α = ∠BAC, and so they are either equal or supplementary. To compute the coordinates of
E we can proceed by finding the equations of the altitudes of △ABC from A and C and solving
the system of equations they form. The altitude from A has equation x = a1, and the altitude from
C = (−1, 0), since

−→
BA = (a1 − 1, a2), is given by (a1 − 1)(x+ 1) + a2y = 0. Therefore,{
x = a1

(a1 − 1)(x+ 1) + a2y = 0
−→ E =

(
a1,

1− a21
a2

)
,

and we realiza that E is the symmetric point of D with respect to the midpoint O of BC (!). So, we
come up with these two facts:

Figure 2: Use of GGD command Prove() and GGD Tool Relation().
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Proposition 4 The hyperbola L2 contains the vertices of the triangle, its orthocenter and the sym-
metric point D of A with respect to the circumcenter.

Proposition 5 In △ABC, the symmetric point of a vertex with respect to the circumcenter and the
orthocenter are symmetric with respect to the midpoint of its opposite side.

Under a suitable construction in GGD, we can also verify the truth of this last statement by using
the GGD commands Prove(AreCollinear(D,O,E)) and Prove(DO==OE) (or the more in-
formative command ProveDetails()), see Figure 2. We also invite the reader to try, in the latest
version of GGD, the command ShowProof() as in ShowProof(AreCollinear(D,O,E)),
which delivers in the CAS view a step-by-step proof of the geometric statement “The points D, O, E
are collinear” (see Figure 3 and Appendix 1).

Figure 3: Use of GGD ShowProof() command.

3.2 Answering Question 3
The powerful tools included in the GeoGebra software allow us to explore easily the hyperbola L2

and represent its main elements: center, foci, vertices, asymptotes and axes (see Figure 4a and [17,
First Construction]). In particular, this facilitates the task of detecting invariant properties. So, after
playing a while by dragging vertex A, we guess that

i) The center of the hyperbola is the midpoint of BC.

ii) The asymptotes are parallel to the angle bisectors at A.

The first assertion readily follows from the expression of the center of a conic in terms of the co-
efficients of its equation (see for example [1]). For the second assertion, we start by obtaining the
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equations of the angle bisectors at A. Let Q = (x, y) be a point on one of the bisectors at A. Then

cos(∠BAQ) = ± cos(∠CAQ) ⇔

(
A⃗B · A⃗Q

∥A⃗B∥ · ∥A⃗Q∥

)2

=

(
A⃗C · A⃗Q

∥A⃗C∥ · ∥A⃗Q∥

)2

and we obtain the polynomial equation

g(x, y) :=− 4a2(−a1a2x
2 + a1a2y

2 + (a21 − a22 − 1)xy

+ (a32 + a21a2 + a2)x− (a31 + a1a
2
2y − a1)y − a1a2) = 0. (5)

Equating to zero the second degree part g1(x, y) := −a1a2x
2 + a1a2y

2 + (a21 − a22 − 1)xy of the left
hand side gives us the parallel lines to the angle bisectors through the origin. But g1 does coincide
with the second degree part in (3), which gives the asymptotes r1, r2 of L2. From all this we infer that
L2 is an equilateral hyperbola, and the axes of L2 are the bisectors of the right angles formed by r1
and r2.

In regard to the vertices and foci of L2, no simple expressions for its coordinates were found, and
the GGD CAS could not provide direct explicit output for them in our trials. Since the center of L2

is at the origin of coordinates and the points (x, y) ∈ L2 such that the their normal line contains the
origin are only the vertices of L2, these are determined by the real solutions of the systeml2(x, y) = 0

∂l2
∂y

/∂l2
∂x

= y/x
−→

−a1a2x
2 + a1a2y

2 + (a21 − a22 − 1)xy + a1a2 = 0
2a1a2y + (a21 − a22 − 1)x

−2a1a2x+ (a21 − a22 − 1)y
=

y

x

Solving this system leads to cumbersome expressions, but we can simplify them by setting (we assume
a1a2 ̸= 0)

a21 − a22 − 1

a1a2
=: k,

so that the system becomes {
−x2 + y2 + kxy + 1 = 0

kx2 − ky2 + 4xy = 0
.

Even in this simpler form, the solutions of the system are more complex than expected and a CAS
software can prove useful to help performing the computations: Setting

l1 =

√
(k2 + 4)(−2 +

√
k2 + 4)

k2 + 4
, l2 = −

√
(k2 + 4)(−2 +

√
k2 + 4)

k2 + 4
,

the real solutions that represent the coordinates of the vertices of L2 can be expressed as follows:xi = −((k2 + 4)l2i + 4)li
k

yi = li

, i = 1, 2.

98

The Electronic Journal of Mathematics and Technology, Volume 19, Number 2, ISSN 1933-2823



(a) (b)

Figure 4: (a) The hyperbola L2 and its elements; (b) Isogonal conjugation

3.3 Answering Question 4
By using GGD we have been able to determine many properties of the locus L arising from Problem 2,
but perhaps we can try to delve deeper and gain a better understanding of its nature. And here the
human intuition still plays a role, sometimes based in prior knowledge, sometimes based in... luck?
Consider the lines BP and CP , where P is such that ∠PBA ∼= ∠PCA = δ, and construct the
symmetric lines BP ′ and CP ′ with respect to the internal angle bisectors at ∠ABC and ∠BCA
respectively, which intersect at P ′. It is straightforward that ∠P ′BC ∼= ∠P ′CB = δ, so that △P ′BC
is isosceles with P ′B ∼= P ′C, and therefore P ′ lies in the perpendicular bisector of BC. In other
words, the transformation P 7→ P ′ takes points in the hyperbola to points in the perpendicular bisector
of BC, and viceversa. But this transformation has a name in plane geometry: isogonal conjugation
(with respect to a triangle), see for example [7]. In this context, a new statement concerning the
hyperbola L2 arises which makes clearer its appearance in our initial approach, and allows for an easy
way to geometrically construct points of L2 from points in the perpendicular bisector of BC (see [17,
Second Construction], where by dragging point P ′ you can get points in L2):

Proposition 6 The hyperbola L2 is the isogonal conjugate of the perpendicular bisector of the side
BC.

It is worthwhile to mention here that for well trained Geometry students (of the kind that receive
intensive training for participating in mathematical contests such as the International Mathematical
Olympiad) this connection to isogonal conjugacy could have been perceived in an initial exploration
of Problem 2, and from this initial realization many of the properties deduced above become con-
sequences of the isogonal conjugation properties. But, in general, isogonal transformations do not
form part of the standard mathematics curriculum in secondary education, and our initial problem
can become a starting point that leads to beautiful Geometry new topics for the interested students.
The isogonal approach allows this informal interpretation of L: Let us consider the locus L̂ of points
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whose distance to vertices B, C are equal. Usually, we infer that L̂ is the perpendicular bisector l of
BC. But if we think in projective terms and allow points at infinity, we could say that L̂ also contains
the line at infinity l∞, since a point in infinity has the same distance from B and C (which is ∞!). And
the isogonal conjugate of L̂ = l∞ ∪ l is precisely L = L1 ∪ L2 because from well-known properties
of this transformation the isogonal conjugate of the line at infinity is the circumcircle of △ABC!

4 Tricks and treats: Two constructions
As a final treat, we propose to the readers two constructions which came up along this work and allow
for further exploration and reflection. In Appendix 2 we show why these constructions actually work.

FIRST CONSTRUCTION: One of the simplest constructions we devised to construct points of L2 is
represented in Figure 5a (see also [17, Third Construction]). Place a point D on the perpendicular
bisector m of BC. Construct the circumference BCD and the internal angle bisector at A. Draw
a parallel to this angle bisector through D, which intersects circumference BCD at other point P .
Show that the locus of points P as D moves along m is the hyperbola L2.

SECOND CONSTRUCTION: Notice that we used the powerful commands of GG to represent notable
points such as the foci and vertices of L2, but we did not actually gave a geometric construction of
them. Here we propose a construction of the vertices of L2 (since this hyperbola is equilateral, getting
the foci from the vertices is straightforward) and we invite the readers to check its validity. Construct
parallels through O to the angle bisectors at A. These parallels divide the plane in four right angles.
Trace the bisectors of these angles b1, b2 and find the symmetric points B′ and B′′ of B with respect
to these lines. Trace the circles c1, c2 with diameters B′C and B′′C. Now we claim (see Figure 5b
and [17, Fourth Construction]):

• One of the bisectors b1, b2 intersects both circles c1, c2.

• One of the circles c1, c2 meets both bisectors b1, b2.

• The intersection points of the circle meeting both bisectors with the bisector meeting both
circles determine the vertices of L2.

(Let us remark, again, that in the above we assume A does not lie in the Y -axis).

5 Conclusion
In summary, we think that we have shown how an apparently trivial geometric question: to describe
the locus of points P such that ∠PBA ∼= ∠PCA, for a triangle ABC, can give rise to a collection
of—each time more involved—observations, then conjectures, and finally, mathematical statements.

What is notorious here is to remark that the use of a technological tool such as GeoGebra Dis-
covery, that provides simultaneously plotting devices, dynamic geometry dragging possibilities, auto-
matic answers for loci equations, computer algebra manipulation of the obtained equations. . . , fosters
our imagination, and demands insistently to launch a joint cooperation with our mind to successfully
deal with such problems.
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(a) (b)

Figure 5: (a) Construction of points of L2; (b) Construction of vertices of L2

This is, we think, the main message of our contribution, the great possibilities provided by the
technological tools, if we organize to use them “to do better things, instead of for just doing (old)
things better” 1.
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Appendix 1
Here we show the output obtained with the command ShowProof(AreCollinear(D,O,E))
of GGD mentioned in Subsection 3.1.

Let A, B, C be arbitrary point
Let t1 be the polygon A, B, C.
Let c be the segment A, B.
Let b be the segment C, A.
Let D1 be the midpoint of c.

Let E1 be the midpoint of b.
Let f be the line through D1 perpendicular to c.
Let g be the line through E1 perpendicular to b.
Let F be the intersection of g and f.
Let O be the midpoint of C, B.

1Freely quoting a sentence stated by Prof. J. Kaput, time ago, back in 1996, at ICME 8, see https://web.arch
ive.org/web/20060621140909/http://mathforum.org/mathed/seville/followup.html
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Let D be the a mirrored at F.
Let h be the line through B perpendicular to b.
Let i be the line through C perpendicular to c.
Let E be the intersection of h and i.
Prove that AreCollinear(D, O, E).
The statement is true under some non-degeneracy
conditions (see below).
We prove this by contradiction.
Let free point A be denoted by (v1,v2).
Let free point B be denoted by (v3,v4).
Let free point C be denoted by (v5,v6).
Considering definition D1 = Midpoint(c):
Let dependent point D1 be denoted by (v7,v8).
e1 := −v1− v3 + 2 ∗ v7 = 0

e2 := −v2− v4 + 2 ∗ v8 = 0

Considering definition E1 = Midpoint(b):
Let dependent point E1 be denoted by (v9,v10).
e3 := −v1− v5 + 2 ∗ v9 = 0

e4 := −v2− v6 + 2 ∗ v10 = 0

Object f introduces the following extra variables:
v11: x value of an implicitly introduced second point
for orthogonal line at D1 to c
v12: y value of an implicitly introduced second point
for orthogonal line at D1 to c
e5 := −v1 + v3 + v8− v12 = 0

e6 := v2− v4 + v7− v11 = 0

Object g introduces the following extra variables:
v13: x value of an implicitly introduced second point
for orthogonal line at E1 to b
v14: y value of an implicitly introduced second point
for orthogonal line at E1 to b
e7 := v1− v5 + v10− v14 = 0

e8 := −v2 + v6 + v9− v13 = 0

Considering definition F = Intersect(g, f):
Let dependent point F be denoted by (v15,v16).
e9 := v10 ∗ v13− v9 ∗ v14− v10 ∗ v15+ v14 ∗ v15+
v9 ∗ v16− v13 ∗ v16 = 0

e10 := v8 ∗ v11− v7 ∗ v12− v8 ∗ v15+ v12 ∗ v15+
v7 ∗ v16− v11 ∗ v16 = 0

Considering definition O = Midpoint(C, B):
Let dependent point O be denoted by (v17,v18).
e11 := −v3− v5 + 2 ∗ v17 = 0

e12 := −v4− v6 + 2 ∗ v18 = 0

Considering definition D = Mirror(A, F):

Let dependent point D be denoted by (v19,v20).
e13 := −v1 + 2 ∗ v15− v19 = 0

e14 := −v2 + 2 ∗ v16− v20 = 0

Object h introduces the following extra variables:
v21: x value of an implicitly introduced second point
for orthogonal line at B to b
v22: y value of an implicitly introduced second point
for orthogonal line at B to b
e15 := v1 + v4− v5− v22 = 0

e16 := −v2 + v3 + v6− v21 = 0

Object i introduces the following extra variables:
v23: x value of an implicitly introduced second point
for orthogonal line at C to c
v24: y value of an implicitly introduced second point
for orthogonal line at C to c
e17 := −v1 + v3 + v6− v24 = 0

e18 := v2− v4 + v5− v23 = 0

Considering definition E = Intersect(h, i):
Let dependent point E be denoted by (v25,v26).
e19 := v4 ∗ v21− v3 ∗ v22− v4 ∗ v25+ v22 ∗ v25+
v3 ∗ v26− v21 ∗ v26 = 0

e20 := v6 ∗ v23− v5 ∗ v24− v6 ∗ v25+ v24 ∗ v25+
v5 ∗ v26− v23 ∗ v26 = 0

Thesis: AreCollinear(D, O, E), in algebraic form:
T1 := v18 ∗ v19 − v17 ∗ v20 − v18 ∗ v25 + v20 ∗
v25 + v17 ∗ v26− v19 ∗ v26 = 0

Thesis reductio ad absurdum (denied statement):
v27: dummy variable to express negation
(T1 ∗ v27− 1) = 0 → (v27 ∗ (((−v17) ∗ v20)+
(v17∗v26)+(v18∗v19)−(v18∗v25)−(v19∗v26)+
(v20 ∗ v25)))− 1 = 0

e21 := −1+v18∗v19∗v27−v17∗v20∗v27−v18∗
v25 ∗ v27+ v20 ∗ v25 ∗ v27+ v17 ∗ v26 ∗ v27− v19 ∗
v26 ∗ v27 = 0

Without loss of generality, some coordinates can be
fixed:
{v4 = 1, v3 = 0, v2 = 0, v1 = 0}
The statement can be suspected to be true under
some non-degeneracy conditions:
Triangle ABC is non-degenerate
endg : −1− v5 ∗ v28 = 0

After substitutions:
sndg : −1− v5 ∗ v28 = 0

The statement requires some conditions:
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A and B are not equal
All hypotheses and the negated thesis after substi-
tutions:
s1 : 2 ∗ v7 = 0

s2 : −1 + 2 ∗ v8 = 0

s3 : −v5 + 2 ∗ v9 = 0

s4 : −v6 + 2 ∗ v10 = 0

s5 : v8− v12 = 0

s6 : −1 + v7− v11 = 0

s7 : −v5 + v10− v14 = 0

s8 : v6 + v9− v13 = 0

s9 : v10 ∗ v13− v9 ∗ v14− v10 ∗ v15 + v14 ∗ v15 +
v9 ∗ v16− v13 ∗ v16 = 0

s10 : v8 ∗ v11− v7 ∗ v12− v8 ∗ v15 + v12 ∗ v15 +
v7 ∗ v16− v11 ∗ v16 = 0

s11 : −v5 + 2 ∗ v17 = 0

s12 : −1− v6 + 2 ∗ v18 = 0

s13 : 2 ∗ v15− v19 = 0

s14 : 2 ∗ v16− v20 = 0

s15 : 1− v5− v22 = 0

s16 : v6− v21 = 0

s17 : v6− v24 = 0

s18 : −1 + v5− v23 = 0

s19 : v21− v25 + v22 ∗ v25− v21 ∗ v26 = 0

s20 : v6 ∗ v23− v5 ∗ v24− v6 ∗ v25 + v24 ∗ v25 +
v5 ∗ v26− v23 ∗ v26 = 0

s21 : −1+v18∗v19∗v27−v17∗v20∗v27−v18∗v25∗
v27+v20∗v25∗v27+v17∗v26∗v27−v19∗v26∗v27 =

0

Now we consider the following equation:
s1∗(−1/2∗v27∗v28∗v12∗v62+1/2∗v27∗v28∗v12∗
v6+1/4∗v27∗v28∗v62+v27∗v12∗v25−1/4∗v27∗
v28∗v6−1/2∗v27∗v12∗v5−1/2∗v27∗v25+1/4∗
v27∗v5)+s2∗(1/2∗v27∗v28∗v11∗v62−1/2∗v27∗

v28∗v11∗v6−v27∗v11∗v25+1/2∗v27∗v11∗v5)+
s3∗(−1/2∗v27∗v28∗v14∗v6+1/4∗v27∗v28∗v62+
1/2∗v27∗v28∗v14−1/4∗v27∗v28∗v6)+s4∗(1/2∗
v27∗v28∗v13∗v6−1/4∗v27∗v28∗v6∗v5−1/2∗v27∗
v28∗v13+1/4∗v27∗v28∗v5)+s5∗(−v27∗v28∗v15∗
v62+v27∗v28∗v15∗v6+2∗v27∗v15∗v25−v27∗
v15∗v5)+s6∗(v27∗v28∗v16∗v62−v27∗v28∗v16∗
v6−1/2∗v27∗v28∗v62−2∗v27∗v16∗v25+1/2∗v27∗
v28∗v6+v27∗v16∗v5+v27∗v25−1/2∗v27∗v5)+
s7∗(−v27∗v28∗v15∗v6+1/2∗v27∗v28∗v6∗v5+
v27∗v28∗v15−1/2∗v27∗v28∗v5)+s8∗(v27∗v28∗
v16∗v6−1/2∗v27∗v28∗v62−v27∗v28∗v16+1/2∗
v27∗v28∗v6)+s9∗(−v27∗v28∗v6+v27∗v28)+s10∗
(−v27∗v28∗v62+v27∗v28∗v6+2∗v27∗v25−v27∗
v5)+s11∗(−v27∗v16+1/2∗v27∗v26)+s12∗(v27∗
v15−1/2∗v27∗v25)+s13∗(−v27∗v18+v27∗v26)+
s14∗(v27∗v17−v27∗v25)+s15∗(−1/2∗v27∗v28∗
v25∗v6+1/2∗v27∗v28∗v25)+s16∗(1/2∗v27∗v28∗
v26∗v6−1/2∗v27∗v28∗v26−1/2∗v27∗v28∗v6+
1/2∗v27∗v28)+s17∗(−1/2∗v27∗v28∗v25∗v62+
1/2∗v27∗v28∗v62∗v5+1/2∗v27∗v28∗v25∗v6−
1/2∗v27∗v28∗v6∗v5−2∗v27∗v15∗v25+2∗v27∗
v15∗v5+1/2∗v27∗v25∗v5−1/2∗v27∗v52)+s18∗
(1/2∗v27∗v28∗v26∗v62−1/2∗v27∗v28∗v63−1/2∗
v27∗v28∗v26∗v6+1/2∗v27∗v28∗v62+2∗v27∗v15∗
v26−2∗v27∗v15∗v6−1/2∗v27∗v26∗v5+1/2∗v27∗
v6∗v5)+s19∗(−1/2∗v27∗v28∗v6+1/2∗v27∗v28)+
s20∗(−1/2∗v27∗v28∗v62+1/2∗v27∗v28∗v6−2∗
v27∗v15+1/2∗v27∗v5)+s21∗(−1)+sndg∗(v27∗
v15∗v6+1/2∗v27∗v25∗v6−1/2∗v27∗v6∗v5−v27∗
v15−1/2∗v27∗v25+1/2∗v27∗v5) → 1 = 0

Contradiction! This proves the original statement.
The statement has a difficulty of degree 5.

To get a better understanding of the inner workings of the command ShowProof() in GGD see
[11].

Appendix 2

SKETCH OF PROOF FOR THE FIRST CONSTRUCTION

We have to show that for a point P defined as in the statement of the first construction, we must have
∠ABP = ∠PCA. Let us denote by α, β, γ the angles at A,B,C of △ABC, and by δ, ϵ the angles
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Figure 6: Geometric proof for Cosntruction 1.

∠ABP,∠PCA. We will assume that line DP intersects the segment CO. Set θ = ∠CDP , and let
us denote by Q the intersection of the interior bisector of α and BC and Q′ the intersection of DP
and BC. By angle chasing we arrive at the following identities (see Figure 6):

δ = ∠ABP = β + θ, ∠DQ′B = ∠AQB = π − α/2− β.

So, ∠PCB = ∠PDB = 2∠Q′DO + θ = 2(π/2−∠DQ′B) + θ = 2(π/2− (π − α/2− β)) + θ =
−π + α+ 2β + θ = β − γ + θ, and so ϵ = ∠PCA = ∠PCB + γ = β + θ = ∠ABP = δ. We leave
for the reader the study of other cases that depend on the location of the intersection of lines DP and
BC.

An alternative approach can be made with coordinate geometry and some GG CAS assistance.
Let us set D = (0, d) and let us set coordinates (0, b) for the center of the circumference through
B,C,D. The equations for the parallels to the bisectors at A through D are given by

−a1a2x
2 + a1a2(y − d)2 + (a21 − a22 − 1)x(y − d) = 0.

The circumference passing through B, C and D is given by the equation

x2 + (y − b)2 = b2 + 1 −→ x2 + y2 − 2b− 1 = 0.

The relation between b and d is given by

(d− b)2 = b2 + 1 −→ d2 − 2bd− 1 = 0.

By eliminating variables b, d in the system
−a1a2x

2 + a1a2(y − d)2 + (a21 − a22 − 1)x(y − d) = 0

x2 + y2 − 2by − 1 = 0

d2 − 2bd− 1 = 0
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we are left with the equation that x, y, a1, a2 must satisfy. This equation can be obtained with the GG
CAS command

Eliminate({−a1a2x
2 + a1a2(y − d)2 + (a21 − a22 − 1)x(y − d) = 0,

x2 + y2 − 2by − 1 = 0, d2 − 2bd− 1 = 0}, {b, d})

which produces as output the equation

a2a1x
4 + a22x

3y − a21x
3y − a2a1x

2y2 − a2a1x
2 + x3y = 0.

Factorizing it we get

x2(a2a1x
2 + a22y − a21xy − a2a1y

2 − a2a1 + xy) = −x2l2(x, y) = 0.

The points satisfying this equation are precisely those of the hyperbola L2 plus those in the vertical
axis x = 0 (which also appear, since the points D obviously satisfy the system).

SKETCH OF PROOF FOR THE SECOND CONSTRUCTION

We have already seen that the parallels to the angle bisectors of ∠BAC through the midpoint O of
side BC are the asymptotes of the hyperbola L2 (see Figure 5b). Since L2 is an equilateral hyperbola,
the bisectors b1 and b2 of the right angles formed by the asymptotes are the axes of the hyperbola.
Therefore, L2 is symmetric with respect to the lines b1 and b2, and the symmetric points B′, B′′ of
B with respect to these lines do also belong to L2. Also, C is symmetric with respect to O, and it
is trivial to deduce that in fact BB′CB′′ is a rectangle with sides parallel to b1 and b2, and inscribed
in L2. Depending on the position of the vertex A, the longest side of BB′CB′′ can be either CB′

or CB′′. Assume CB′ is the longest one. It is not hard to see that, in an equilateral hyperbola, this
longest side must be parallel to its major axis, the one containing its vertices. The key fact which
helps proving that Construction 2 actually works is:

Proposition 7 Given an equilateral hyperbola, any circle which has as diameter a segment of the
hyperbola parallel to its major axis passes through its vertices.

The curious reader can check this statement by using coordinate geometry with the standard equation
for an equilateral hyperbola x2 − y2 = k2. In fact, this property is equivalent to stating that an
equilateral hyperbola is the strophoid of a line (its minor axis) with respect to a fixed point (one of its
vertices) and the perpendicular direction to the line (see [12, page 137]).
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